URL: http://www.nik.sal.tohoku.ac.jp/~tsigeto/statg/ 作成:田中重人 (講師) <tsigeto@nik.sal.tohoku.ac.jp>

比較現代日本論研究演習 [

大学院生対象: 2003 年度前期 <木2>コンピュータ実習室(文学部本館7F 711-2)授業コード=LM14203

『講義概要』p. 398 記載内容

◆講義題目:統計分析入門

◆授業内容:意識調査・テスト・実験などのデータはどのように分析すればい いでしょうか。この授業では、データの特徴を要約する記述統計の手法を中心 に、統計分析の基礎を学びます。統計解析パッケージ SPSS を使ってデータ分 析の実習を毎回おこないます。

◇実習室で使用できるコンピュータ台数が限られているため、受講人数の制限 をおこなうことがある。

◇テキスト:吉田寿夫、1998『本当にわかりやすいすごく大切なことが書いて あるごく初歩の統計の本』北大路書房。

◇成績評価の方法:各回の授業中の課題(50%)、中間試験(20%)、期末レポ ート (30%) を合計して評価する。

授業の概要(予定)

目次

- 1. イントロダクション (4/10)
- 2. SPSS 入門 (4/17)
- 3. 統計分析の基礎 (4/24, 5/8)
- 4. 度数分布とクロス表 (5/15~6/5)
- 5. 中間試験 (6/12)
- 6. 平均値の比較(6/19~7/17)

※()内の日付は、学期前のおおよその計画をあらわしているが、実際の授 業の進行状況によって前後にずれることがある。

1. イントロダクション

- この授業の概要・スケジュール・評 価方法
- 部屋とコンピュータの使いかた
- SPSSの起動
- 他のソフトウエアについて(電卓. Excel, Word)
- 印刷

2. SPSS 入門・データ配布

- SPSSの概要
- データ行列 (データセット)
- データの配布
- SPSS コマンド・シンタックス
- メニューによるシンタックス作成
- 変数値の再割り当て

3. 統計分析の基礎

- 実験と観察
- データの記述
- データの種類
 - 名義・順序・間隔・比例 順序尺度と間隔尺度の変換 正規分布とは
- 標本抽出の4段階モデル
- サンプリングの概念と手順
- 新聞・雑誌・論文などにみられる調 **杳の母集団・標本などについて各自** 報告 (5/8)

4. 度数分布とクロス表

- 4.1. 度数分布表
 - frequencies コマンド
 - 相対度数 (パーセンテージ)
 - 棒グラフ
 - ヒストグラム・度数ポリゴン
 - Excel で整形, グラフ作成

4.2. クロス表

- クロス表表記
- 行と列の%
- 周辺度数 (marginal distribution)
- crosstabs コマンドとそのオプショ $\mathbf{\dot{\nu}}$

4.3. 無関連状態と期待度数

- Φ係数
- 期待度数・残差・連関係数
- クロス表の書きかた

5. 中間試験

6. 平均値の比較

6.1. 平均と分散

- データの種類:復習
- 平均值
- 分散と標準偏差
- 分布と外れ値
- ノンパラメトリックな代表値(中央 値と四分位偏差)

6.2. 平均値の層別比較

- 平均の差と差の平均
- エフェクト・サイズ
- 相関比から分散分析へ
- 公表に際してなにを書くべきか

2003.4.10

比較現代日本論研究演習 I (田中重人) 受講登録フォーム

氏名:

学年:

学籍番号:

所属 (文学部日本語教育以外の場合):

興味のあること(非学術的な話題も可):

・自宅でパソコンを使えますか? ある / ない

・SPSS を使った経験がありますか? ある / ない

・コンピュータ・プログラムを作成したり、プログラミングの授業を受けた

りしたことがありますか? ある / ない

ある場合 → 言語名 ()

・確率・統計または類似の授業を受けたことがありますか?

ある / ない

比較現代日本論研究演習 I 「統計分析入門」 カードをとって 適当なところに着席 電源はまだ入れない	2003.4.10 比較現代日本論研究演習 I 統計分析入門 東北大学大学院文学研究科 2003 年度 田中 重人 (講師)	【目的】 統計分析の基礎的な手法の習得 ● SPSSの操作 (4月) ● クロス表分析 (5-6月) ● 平均値の比較 (6-7月)	 ★ 推測統計は後期の 「研究演習 II」であつかう。 →修士論文等で統計的手法を使う予定の場合 は連続履修することがのぞましい 3
【教科書】 吉田 寿夫 (1998) 『本当にわかりやすいすごく大切なことが 書いてあるごく初歩の統計の本』 北大路書房。 ※生協文系書籍部に入荷ずみ	受講登録フォーム記入 5	【コンピュータ実習室について】 ★ 入室に学生証が必要 (ない場合は一時利用カードを教務掛で借りる) ★ 土足・飲食・喫煙 厳禁 ★ 退出時は必要事項を紙に書く (書けるところを書いてみよう) ★ ドアが開かなくなったときは電話で連絡 	【コンピュータの起動と終了】 ・本体とディスプレイの電源を ON ・表示されるお知らせの内容をよく読む ・シャットダウンしたら、 ディスプレイの電源を切る
【ファイルの保存場所】 授業でつかうファイルは、 授業開始時に My Document フォルダにコピーして使う。 授業終了時に削除してかえること。 ★ 内蔵 Disk にデータは置けない	必要なデータは各自でフロッピー にコピーして持ち帰る → フロッピーディスクを 各自で購入しておくこと。 9	【SPSS】 データ解析用ソフトウエア ★ Windows での開発に 特に力を入れている ★ 購入しやすい 10	【この授業で使用するデータ】 1995 年 SSM 調査 B 票の一部 cf. 『日本の階層システム』(全6巻) 東京大学出版会、2000 年。
【その他のソフトウエア】 ● 表計算 (Excel) ● 電卓 (「アクセサリ」のなか) ● ワープロ (Word)	【印刷】 モノクロプリンタ2台 ★ 電源の入れかた ★ 出力先の切り替えかた ★ ジョブの確認・取り消し ★ 印刷前にプレビュで確認 ★ タイル印刷 (2 面, 4 面,) の方法		

2003.4.17 比較現代日本論研究演習 I (田中重人) 第 2 回「SPSS 入門」目次 1. 模擬データ入力実習 2. データの配布 3. SPSS のウインドウ構成 4. メニューとシンタック 5. 変数値の再割り当て 6. 出力の読みかた・印刷	【模擬データ入力実習】 ● まず変数を定義 ・「データエディタ」ウインドウの下の 「変数ビュー」タブに切り替える ・変数名を必要なだけつくる ・「データ ビュー」タブに切り替え,確認	 データを入力 My Document 内に保存 「エクスプローラ」で確認 ※ このファイルは授業終了時に削除 (フロッピーにコピーする必要はない) 3 	【データの配布】 1995 年 SSM 調査 B 票の一部 ★ 全国から 70 歳以下の有権者を 層化 2 段無作為抽出 ★ 訪問面接法 cf. 『日本の階層システム』(全6巻) 東京大学出版会、2000年。
 ★ 意識項目と基本的属性に限定 (調査票の×印はデータセットにない項目) ★ 250 ケースをランダムに抽出 ★ 未公開のデータなので 流出しないように ★ 変数ラベルは菅野剛 (日本大学)氏による 	 ★ 毎回の授業で使うので、 忘れないこと ★ レポート提出時に返却 	【データ・セット】 ★ ケース × 変数 ★ 変数は変数名で管理 ★ 変数名以外に「ラベル」 ★ 無回答などの欠損値 (.)	【SPSS のウインドウ構成】 ● データ・エディタ ● シンタックス・エディタ ● 出力ビューア
【メニューとシンタックス】 ★ 分析手法をえらぶ ★ 必要なオプションを指定 ★ 「貼り付け」をクリック ★ シンタックスの必要部分を選 択して実行(▶)	【変数値の再割り当て】 データエディタのメニューバーで ● 「変換」→「値の再割り当て」 →「他の変数へ」 ● 変換先変数の名前をつける	 ●「今までの値と新しい値」 ●値の組を指定したら「続行」 ●シンタックスを貼付けて実行 ●新変数の度数分布を確認 ●問題がなければデータセット を保存する 	 【出力ビューア】 ★ 左側に目次、右側に出力内容 ★ エラー表示もここに出る 【印刷】 ★ 左側の目次で選択 ★ 印刷前にプレビュ ★ タイル印刷 (2 面, 4 面,) 12
【データの保存】 ● シンタックス・エディタ ● 出力ビューア ● データ・エディタ (上書きしないこと: 変更がなければ保存不要)	シンタックスはテキストファイル → メモ帳などのエディタで読める 他のファイルは、SPSS でのみ読み書き可能 14	【実習】 本人年収 (Q44_1)を 5~7 程度の 適当な間隔に区切って度数分布表 を出力し、印刷して提出	

 2003.5.15 現代日本論演習 I (田中重人) 第 5 回「変数の分類と度数分布」目次 1. 変数の種類 2. 尺度の変換 3. 度数分布表 4. 棒グラフとヒストグラム 	【変数の種類】 ●比率尺度 (ratio scale) ●間隔尺度 (interval —) ●順序尺度 (ordinal —) ●名義尺度 (nominal —) (質的変数とも)	 【尺度の変換】 ★ 上位の尺度のほうが あつかえる演算が豊富 ★ 上位の尺度は下位の尺度の特 徴を兼ね備えている →分析手法の選択幅がひろい 3
 私たちが測定するものはたいてい 順序尺度以下である ★ 上位の尺度への変換には 一定の理論的根拠が必要 4 	【度数分布表】 Frequencies コマンドを使う ★ 度数 ★ 相対度数 (%) ★ 累積度数・累積% ★ 欠損値のあつかい 5	 【累積%とパーセンタイル】 ○順序尺度以上の場合のみ意味を持つ ○ percentile(= %点) ○ 中央値 (median) = 50%点 ○ 「割り切れてしまう」場合は中点をとる (教科書 p. 43) ○ 同じ値が並ぶ場合は多少の操作が必要 (森敏昭・吉田寿夫(編) (1990)『心理学のための データ解析テクニカルブック』北大路書房. p. 15)
【棒グラフとヒストグラム】 ●棒グラフ棒同士の間に空白 をあける。高さ(長さ)をよむ。 ●histogram (柱グラフ)柱の 間隔をあけない。面積をよむ。 ※縦軸は度数または%	 ★ 連続量を階級分けした場合 → ヒストグラム ★ それ以外の場合 (離散量/ 名義尺度) → 棒グラフ ※度数多角形 (polygon) は複数の変数の分 布を比較するときに便利。 	棒グラフ ヒストグラム 度数ポリゴン SPSS では histogram が書きにくい。 ★ recode で整形した上で度数分布表のメニ ユーで「図表…」指定。棒グラフを書く ★グラフ→インタラクティブ→ヒストグラム では等間隔の区間に分割してくれる 9

【実習】

- (1) 本人年齢の度数分布表を出力 し、中央値と上側 20%点に印を つけよ
- (2) 適当な変数について棒グラフ またはヒストグラムを作成

_____ 10 ____

比較現代日本論研究演習 I (田中重人)

2003.6.19

【回答上の注意】

中間試験

他の回答者の画面が見えないよう、互いに離れて座ること
 コンピュータで回答を書き、印刷して提出
 Word が使えることを確認
 小数の回答については、小数第1位まで書くこと
 何を持ち込んで参照してもよいが、人に相談してはならない

間1 年齢が50歳以下のグループと51歳以上の2グループにデータセットを分割して分析したい。 SPSS でこの操作をするときに必要なシンタックスを書け。ただし年齢の変数名は q1 2a である。

間2 次の対概念について、それぞれどういう違いがあるかを簡単に説明せよ。

- (1) 「実験」と「観察」
- (2) 「記述統計」と「推測統計」
- (3) 「順序尺度」と「間隔尺度」
- (4) 「母集団」と「計画標本」

間3 男性 250人、女性 300人を対象にしたある調査結果によると、よくお酒を呑む者の率は男性 では 76.0%、女性では 65.7%であった (欠損値はないものとする)。この結果に基づいて、次のよう なクロス表を作成せよ (ただし%のところには行%を書くこと)。

	よく呑む	呑まない	合計
男性	人数	人数	人数
	(%)	(%)	(%)
	期待値	期待値	
	残差	残差	
女性	人数	人数	人数
	(%)	(%)	(%)
	期待値	期待値	
	残差	残差	
合計	人数	人数	人数
	(%)	(%)	(%)

比較現代日本論研究演習 I (田中重人)

中間試験 解答例

2003.6.19

間1 RECODE

q1_2a (Lowest thru 50=1) (51 thru Highest=2) INTO age2 . ← 新変数名はなんでもよい EXECUTE .

SORT CASES BY age2 . SPLIT FILE LAYERED BY age2 .

- 間2 次の対概念について、それぞれどういう違いがあるかを簡単に説明せよ。
- (1) 条件を人工的に統制するのが「実験」、しないのが「観察」
- (2) データの特性を要約して示すのが「記述統計」。 データに含まれる誤差を推測するのが「推測統計」。
- (3) 「順序尺度」の値の配列には一定の順序があるが、値の和や差に意味はない。 「間隔尺度」の場合、値の和や差をとることに意味がある。
- (4) 母集団:検討しようとしている対象の集団全体で、その範囲が確定しているもの 計画標本:母集団から何らかの方法で抜き出した実際の調査対象

間3

	よく呑む	呑まない	合計
男性	190	60	250
	(76.0)	(24.0)	(100.0)
	175.9	74.1	
	14.1	-14.1	
女性	197	103	300
	(65.7)	(34.3)	(100.0)
	211.1	88.9	
	-14.1	14.1	
合計	387	163	550
	(70.4)	(29.6)	(100.0)

2003 6 10 比較現代日大論研究演習 1 (田山東人)		
第10回「クロス表の書きかた」	【他人に見せる衣】	【他へに見せられない衣】
1. 他人に見せる表	● 貝科としての表…) ージを許 細に声明したものがとい	★ セル数か多りさて同辺反数か 「 何っているもの
2 表と図のあつかい	▲ プレゼンテーション田の表…	期待度数が5未満のセルがあると、
	● クレビング クロン川の衣 わかりわすく 情報を圧縮する	Ⅴ 係数は無意味
3. 表の書きかた	1/2 1/10 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	→適切なカテゴリー統合を行う必要
		※資料としての意味はまた別である
1	2	3
	「また図】	【まし図の約古 ごし】
★ カテゴリーの並べ順や行列の	【衣C凶】 ま (tabla) 、 送空を開始式	
くみあわせをわかりやすく	本 (lable) …)冶子と封称 C	▼「衣」」「凶」」のように
	「「「別型に組む。	それそれ通し番号をつけて参照
★ 変致とカテコリーの命名	図 (figure) …活字・罫線以外の	★ 表のタイトルは上、
★ 表のタイトル	要素を含む。グラフのほか、	図のタイトルは下
	概念図や写真を使うことも	★ 「それだけでわかる」ように
4	5	6 6
【キに書くぶも西書】	★ 行→列の因果を想定するのがふつうだが	
	列→行でもよい。(%の「100.0」で区別)	★ 並字列はた描え 数字は小数占描えが基本
● 谷ゼルの行(列)% ● 行(列)会計の度数と「100.0%」	★ 全度数が 1000 人以下であれば、	 ▲ タイトル 表木休 注釈を読めば
● 別(行)合計の%	%は小数第1位まで	それだけでわかるように書く
 ● 全体の度数 	★ V や φ などの係数は小数第 3 位まで	→タイトルと行・列頭の見出し (heading)
● Cramer の V(またはの)	★ 2 列表の場合は 1 列の%だけ示してもよい	を工夫する
● 欠損数とその原因	★ 統計的検定をした場合は、その結果も	
7	8	9

2003.6.19 比較現代日本論研究演習 I(田中重人)

授業資料

	作生5	別による不公平		
性別 -	「大いにある」	「少しはある」	「ない」	合計 (人)
男性	36.0	50.5	13.5	100.0 (111)
女性	27.3	56.8	15.9	100.0 (132)
合計	31.3	53.9	14.8	100.0 (243)

表1 性別と性別による不公平感との関連

Cramer's V=0.094。 無回答=7。

■「大いにある」□「少しはある」□「ない」 女性 男性 0% 20% 40% 60% 80% 100% 図1 性別と性別による不公平感との関連

表2 県や市町村の部課長以上の役人に知り合いがいる比率の男女差

性別	%	(人)	
男性	46.0	(113)	
女性	27.6	(134)	
合計	36.0	(247)	
φ=0.191. 無回答=3.			

図2 県や市町村の部課長以上の役人に知り合いがいる%の男女差

2003.6.26 比較現代日本論研究演習 1 (田中重人) 第 10 回「平均値と標準偏差」 1. 尺度水準と分析法 2. 代表値と散布度 3. 平均値と標準偏差 4. SPSS のコマンド 5. 平均値を使うときの注意事項	【尺度水準と分析法】 名義×名義 → クロス表 名義×間隔 → 平均値の比較	【代表値と散布度】 ★ 平均値 (mean) - 標準偏差 (SD) (間隔尺度以上) ★ 中央値 (median) - 四分位偏差 (Q) (順序尺度以上) (数科書 p. 42-51) 3	【平均値】 総和をデータ数で割ったもの 【標準偏差】 平均値からの偏差の2乗値の平均が「分散」 分散の平方根が「標準偏差」 ★ 平均値と標準偏差はセットで使う 4
★次のデータの平均と SD は? {0, 1, 4, 5, 7} 5	【SPSS のコマンド】 「記述統計」→「度数分布表」 →「統計」オプションで 「平均値」と「標準偏差」をチェック 「記述統計」→「記述統計」でもよい 6	【平均値を使うときの注意事項】 ★平均値ははずれ値の影響を受けやすい。 あまりにかけはなれたケースがあるときは ・上下数%を取りのぞいたデータセットで 計算する (調整平均:教科書 p.46) ・順位に変換したり中央値を使って分析 7	 ★平均値・標準偏差は間隔尺度以上のデータ に対してしか意味をもたない。 順序尺度の平均値をとっていいのは ・潜在的には間隔尺度のはず ・測定のポイントが一定間隔 という2条件をともに満たす場合 ※ 2値の変数は間隔尺度とみなせるが、若干の注意が必要。 8
観測変数が潜在 変数の尺度を反 映していると推 測できる場合の み、順序尺度の 観測変数を間隔 尺度とみなして よい	 具体的には 4 点以上の尺度 正規分布に近似(教科書 p. 53-59): 単峰性 左右対称性(歪度) 中央への集中度(尖度) ヒストグラムを描いて検討するとよい。 正規分布との乖離度を統計的に検討する手法もある 10 	 ・尖度は「度数分布表」の 「統計」オプションで指定できる 正規分布のとき0、 絶対値が大きくなるほど、正規分布から外れる 	これらの条件を満たさない場合は ● 非線形変換 (教科書 p.142-144) ● 順位に変換したり中央値を使って分析
 ※間隔尺度のデータでも、 左右対称でないものについては 平均値よりも中央値のほうが 適当であることが多い 典型例:収入・人口など 	【課題】 適当な変数について、度数分布表を出力し、 そこに平均と標準偏差を書き入れて提出	 【期末レポート】 期限: 8/5 (火) 17:00 提出先: 田中研究室 (文法合同棟 2F)。 田中が不在のときは 205 室のレターケースへ 内容: クロス表・平均値の比較の両方を使い、適当な分析をして結果を解釈する。 備考: 後期の授業「比較現代日本論研究演習 II」を受講しない者は、SSM データのディスクをレポートと一緒に提出。 データのコピーをすべて消去すること。 	

