Female employment and the socioeconomic and family factors in Japan

Junko INUI 1uiju<u>nko</u>3@gmail.cor

Research background

- * Increasing numbers of women are entering the workforce.
- But, Almost 70% of women exit the labor market during marriage or childbirth and this figure remains high, especially among higher educated women (Cabinet Office 2006).

2

Aim of this research

- * To identify determinants of female employment in Japan in order to achieve "work-life-balance".
- Douglas-Arisawa's law work well?
- When income of husband is high, wife does not work?
- When income of husband decreases, wife comes to work?

3

Douglas-Arisawa's law

 There is core revenue earner (nuclear members) in the household. Given the wage rate of nonnuclear members, non-nuclear member is more likely to work when core revenue earner makes less money.

Douglas-Arisawa's law

2. For a certain set of households, when nonnuclear-member can make more money, the rate of her(his) working rate is higher than their counterpart.

 \Rightarrow

 There is a negative correlation to employment probability of wife and height of the income level of the husband in the comparison between the household.

Previous research

- * Income effect of the husband that affects the employment decision of his wife can be interpreted in two ways (Mincer 1962).
- 1) Increasing the wages of the husband leads to reduce the working hours of the wife.
- 2) The first place, female who prefers leisure time is married to men earning high wages.

Previous research

- * The interpretation of "Douglas-Arisawa's law" is often made as 1) patern.
- However, in order to make such interpretation, we have to eliminate the problem of endogeneity made by preferences which can not be observed in women, such as 2) patern(Takeuchi 2004).

Strategy in this study

- In a cross-sectional analysis, it is assumed that all economic entities would have the same behavior structure.
- Panel analysis takes into account the heterogeneity of the economic entity as the individual effect.

Strategy in this study

- random-effects model treates the individual effect that shows the attributes of the economic agents as a random variable.
- * Fixed effects model is assumed that the individual effect is constant during the observation period.

Strategy in this study

 In this study, I verify the factor of the employment of women in the form of removing the effect of the preference of female by using a random-effects model and the fixed effects model.

Research question

* In removing the effect of preferences in mate choice of wife,

Q1: When income of husband is higher than the others, his wife do not work?

Q2: When the income of her husband fell, his wife become working from having no job?

data

- * National Family Research of Japan, 2008-2012 Panel Study done by The National Family Research committee of the Japan Society of Family Sociology. Survey date: January 2009 through January 2013, every year
- * The first year reserch is called NFRJ08
- * Survey area: All over Japan.
- * Sample: NFRJ08 respondents who agreed to participate to the panel surveys (1,879 persons)
- * Used only under 60 years old married women.

variables

> Dependent variable

* Having job dummy (regular worker, part-timer, self-employed/family worker=1, Having no job=0)

13

variables

Independent variables

- * Age, the square of the age
- Education(Primary-junior high, high schools, vocational school, junior-technical colleges, university)
- * Husband's annual income
- * Youngest child's age
- * Scale of Resident city (21 large cities, the city of more than 100,000, the city of less than 100,000.)

14

* Husband's working hours

/ariable	average	s.d.	Min	Max
having job dummy	0.688	0.463	0	1
Age	44.523	8.382	28	60
Square of age	2052.538	755.801	784	3600
Educational background				
Primary-junior high school dummy	0.023	0.149	0	1
High school dummy	0.410	0.492	0	1
Vocational school dummy	0.171	0.376	0	1
Junior- technical college dummy	0.250	0.433	0	1
University dummy	0.147	0.354	0	1
Husband revenue	529.682	244.538	0	1200
Husband working hours	9,908	2.098	2	24
Cities of residence scale				
21 large cities	0.281	0.449	0	1
More than 100,000	0.415	0.493	0	1
Less than 100,000	0.304	0.460	0	1
Youngest child age				
Without children	0.066	0.248	0	1
0-3 years	0.146	0.353	0	1
4-6 years	0.121	0.327	0	1
7-12 years	0.207	0.405	0	1
13-15 years	0.089	0.285	0	1
16-18 years	0.084	0.278	0	1
19 years of age or older	0.287	0.452	0	1

Fixed-effect Analysis

		standard	
Variable	Coefficient	error	Z
Age	1.264 **	0.452	2.8
Square of age	-0.011 *	0.005	-2.35
Husband revenue	0.002	0.001	1.62
Husband working hours	-0.145	0.090	-1.6
Cities of residence scale			
21 large cities (reference)			
More than 100,000	0.806	0.764	1.06
Less than 100,000	0.189	1.285	0.15
Youngest child age			
Without children	2.763 *	1.274	2.17
0-3 years (reference)			
4-6 years	1.581 **	0.551	2.87
7-12 years	1.786 *	0.780	2.29
13-15 years	2.479 *	1.021	2.43
16-18 years	3.350	1.781	1.88
19 years of age or older	3.826	2.230	1.72
log likelihood		-157.216	
Model 🗶 square		61.1**	
Number of observations / number	r of samples	491/116	

Results (1)

- * Fixed-effect model
- Reduction of husband's revenue, the length of the husband's working hours did not affect you on whether or not the employment of his wife.

17

Pandom offe	$c + \Lambda$	n	alvei	c
nanuomene	<u>:CLA</u>		<u>aiysi</u>	2
			standard	
Variable	Coefficient	_	error	2
Constant	-14.140	*	5.899	-2.4
Age	0.795	**	0.271	2.94
square of age	-0.010	**	0.003	-3.31
Educational background	0.005			1 00
Primary- junior nign	-2.625		1.014	-1.63
nign school (reference)				
Vocational school	-0.169		0.646	-0.26
Junior- technical college	-1.466	*	0.594	-2.47
University	-0.047		0.694	-0.07
Husband revenue	-0.002	**	0.001	-3.03
Husband working hours	-0.075		0.070	-1.06
Cities of residence scale				
21 large cities (reference)				
More than 100,000	0.365		0.477	0.76
Less than 100,000	0.219		0.560	0.39
/oungest child age				
Without children	2.485	**	0.844	2.94
0-3 years (reference)				
4-6 years	2.639	**	0.484	5.45
7-12 years	4.013	**	0.613	6.55
13-15 years	5.350	**	0.783	6.83
16-18 years	5.963	**	0.917	6.5
19 years of age or older	6.160	**	0.991	6.22
log likelihood			-810.849	
Model 🗶 square			114.39**	
Number of observations / number of samples			2217/591	
⊧*: p<0,010, *: p<0,050				

Results (2)

- * Random-effects model
- Education(National College of Technology and College is negative compared to high school)
- When husband income is higher, wife tends not to work .
- Youngest child age has a clear effect. (1-3 years old and o years of age)

19

Conclusion

- * That husband's income is relatively low encourage his wife to have job (random-effects model), but short-term descrese of his income had no effect on the entry into the labor market of his wife.
- * It is consistent with the results of Takeuchi (2004, 2006) (=target 20-30 Young Women of the 1990s).

* By the constraints of the labor market, the entry to labor market of women who once left the labor market might be blocked.

- Or, we can consider the possibility that there is a difference between what women are looking for and the quality of work that is open to women.

* Thank you for your attention.

22